Ligand Affinities Predicted with the MM/PBSA Method: Dependence on the Simulation Method and the Force Field

Aaron Weis, ${ }^{\dagger}$ Kambiz Katebzadeh, ${ }^{\dagger}$ Pär Söderhjelm, ${ }^{\dagger}$ Ingemar Nilsson, ${ }^{\dagger}$ and Ulf Ryde*, ${ }^{\dagger}$
Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden, and Medicinal Chemistry, AstraZeneca R\&D, SE-431 83 Mölndal, Sweden

Received July 13, 2006
The free energy of binding between avidin and seven biotin analogues has been calculated with the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method. We have studied how the force field and the method to generate geometries affect the calculated binding free energies. Four different force fields were compared, but we saw no significant difference in the results. However, mixing the force fields used for the geometry generation and energy calculations is not recommended. In the molecular dynamics simulations, explicit water molecules must be used, but the size of the simulated system and the boundary conditions are less important. In fact, nonperiodic simulations with a fixed protein outside a relatively small simulated system ($18 \AA$) seem to be a proper approach. The mean absolute error was $9-19 \mathrm{~kJ} / \mathrm{mol}$, with a standard error of $5-15 \mathrm{~kJ} / \mathrm{mol}$, which arises mainly from the entropy term.

Introduction

Almost all biological processes depend on the interaction and binding of molecules. A typical example is the binding of a small molecule (a ligand, L) to a macromolecule (the receptor, R , typically a protein or a nucleic acid), forming a complex (RL):

$$
\begin{equation*}
\mathrm{R}+\mathrm{L} \rightarrow \mathrm{RL} \tag{1}
\end{equation*}
$$

Such a reaction is of particular interest in medicinal chemistry because the action of most drugs (inhibition, activation, etc.) is caused by the binding of the drug to its target receptor. Therefore, an important goal of theoretical chemistry is to develop accurate methods to predict the free energy of this reaction, the binding affinity, $\Delta G_{\text {bind }}{ }^{1,2}$

The most accurate and stringent theoretical method to predict ligand affinities is free energy perturbation (FEP). ${ }^{3}$ In this method, a free energy change is calculated by slowly changing a system to another via a set of unphysical mixed states, using molecular dynamics (MD) or Monte Carlo simulations. Unfortunately, the results converge only for small changes. Therefore, this method has mainly been used to calculate the relative binding affinities of similar drugs to the same protein. ${ }^{1,3-5}$ However, recently it has been shown that accurate absolute binding affinities can also be obtained by FEP but only at a very large computational effort (~ 6000 CPU days per ligand). ${ }^{6}$

Therefore, more approximate methods to estimate ligand affinities have been developed, e.g., the linear interaction energy (LIE) method ${ }^{7}$ and the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method. ${ }^{8}$ Both methods restrict the simulations to the states before and after binding. Other methods are also available, which estimate binding energies without any simulations. They are based on physical or structural quantities, obtained from statistical regression analyses of receptor-ligand complexes. ${ }^{1}$ Unfortunately, none of these more approximate methods provide a uniform and high accuracy for all types of receptors. ${ }^{1}$ Therefore, improved methods for predicting ligand affinities are strongly needed.

[^0]Among the approximate methods, the MM/PBSA approach is attractive because it does not contain any parameters that vary for different ligand-receptor systems and it involves a set of physically well-defined terms: The binding affinity is estimated from the free energies of the three reactants, ${ }^{8}$

$$
\begin{equation*}
\Delta G_{\mathrm{bind}}=G(\mathrm{RL})-G(\mathrm{R})-G(\mathrm{~L}) \tag{2}
\end{equation*}
$$

where all the reactants are assumed to be in water solution. The free energy of each of the reactants is estimated as a sum of four terms:

$$
\begin{equation*}
G=\left\langle E_{\mathrm{MM}}\right\rangle+\left\langle G_{\mathrm{Solv}}\right\rangle+\left\langle G_{\mathrm{np}}\right\rangle-T\left\langle S_{\mathrm{MM}}\right\rangle \tag{3}
\end{equation*}
$$

where $G_{\text {Solv }}$ is the polar solvation energy of the molecule, estimated by the solution of the Poisson-Boltzmann (PB) equation, ${ }^{9} G_{\mathrm{np}}$ is the nonpolar solvation energy, estimated form the solvent-accessible surface area of the molecule, ${ }^{10} T$ is the temperature, S_{MM} is the entropy of the molecule, estimated from a normal-mode analysis of harmonic frequencies calculated at the molecular mechanics (MM) level, and E_{MM} is the MM energy of the molecule, i.e., the sum of the internal energy of the molecule (i.e., bonded terms, $E_{\text {int }}$) and the electrostatics $\left(E_{\text {es }}\right)$ and van der Waals interactions (E_{vdW}):

$$
\begin{equation*}
E_{\mathrm{MM}}=E_{\mathrm{int}}+E_{\mathrm{es}}+E_{\mathrm{vdW}} \tag{4}
\end{equation*}
$$

All the terms in eq 3 are averages of energies obtained from a number of snapshots taken from MD simulations. To reduce the time consumption and to obtain stable energies, the same geometry is normally used for all three reactants (complex, ligand, and receptor), i.e., only the RL complex is simulated by MD. ${ }^{11}$ Thereby, $E_{\text {int }}$ cancels out in the calculation of $\Delta G_{\text {bind }}$. The MM/PBSA method has successfully been applied to several different systems. ${ }^{8,12-17}$

This means that we can try to improve the MM/PBSA method by improving each of the five (noncanceling) energy terms in eqs 3 and 4 . However, the most time-consuming part of the MM/PBSA method is the generation of the snapshots (geometries) employed in the energy calculations, i.e., the MD simulations. In this article, we compare ligand affinities calculated with the MM/PBSA method on snapshots obtained with
a)

c)

d)

f)

Figure 1. Structures of the seven biotin analogues studied: (a) biotin (BTN1), (b) 2^{\prime}-iminobiotin (BTN2), (c) desthiobiotin (BTN3), (d) $1^{\prime}-N$ methoxycarbonylbiotin methyl ester (BTN4), (e) D-4-n-hexyl-2-iminoimidazolidine (BTN5), (f) D-4-n-hexyloxazolidone (BTN6), and (g) imidazolidone (BTN7).
different simulation methods, ranging from simulations with a large number of explicit water molecules and periodic boundary conditions or reaction-field corrections, via generalized Born (GB) implicit solvent models, ${ }^{18}$ to vacuum simulations with a constant or distance-dependent dielectric constant. In addition, we compare calculations (both geometry and energy) with four different force fields: the Amber force fields ff94, ${ }^{19} \mathrm{ff} 99,{ }_{2} \mathrm{ff} 03,{ }^{21}$ and ff02, ${ }^{22}$ which differ mainly in the treatment of electrostatic interactions (ff94, ff99, and ff03 are nonpolarizable with charges obtained with different quantum mechanical (QM) methods, whereas ff02 is a polarizable force field). In addition, we also try to calculate energies with charges calculated with QM methods on the actual conformation of all residues in the protein and in all snapshots.

For such an investigation, it is necessary to have a good test system. We have selected the avidin-biotin complex because it is well characterized by X-ray crystallography, ${ }^{23-26}$ a wide range of experimental binding free energies for a number of ligands (biotin analogues) are available, ${ }^{27-29}$ and the system has been investigated by several different theoretical methods, including FEP, ${ }^{4,5}$ LIE, ${ }^{5}$ and MM/PBSA. ${ }^{12,17,30}$ Biotin is a member of the vitamin B group and is needed for growth. Avidin is a protein found in egg white, where it is believed to protect the chicken embryos from disease-causing organisms by binding biotin very strongly; this interaction is among the strongest known in nature. ${ }^{23}$ Seven ligands were studied in this investigation (shown in Figure 1), with binding affinities ($\Delta G_{\text {bind }}$) ranging from -85 to $-19 \mathrm{~kJ} / \mathrm{mol} .{ }^{28}$

Methods

Biotin Analogues and Neutral Arginine. The seven biotin analogues (BTN1-BTN7) studied in this investigation are
shown in Figure 1. MM parameters for these molecules were obtained in the following way: The molecules were optimized with the Hartree-Fock method (HF) and the $6-31 \mathrm{G}^{* *}$ basis set. The electrostatic potential (ESP) was then calculated with a single-point calculation, using three different methods depending on the intended force field: HF/6-31G* for ff94 and ff99, ${ }^{19,20}$ B3LYP/cc-pVTZ for ff02, ${ }^{22}$ and B3LYP/cc-pVTZ with solvent effects treated with the integral equation formalism polarized continuum method (IEFPCM) method ${ }^{31}$ and a dielectric constant of 4 for ff03. ${ }^{21}$ The points at which the ESPs were calculated were selected according to the Merz-Kollman scheme ${ }^{32}$ but using a higher than default density of points (10 concentric layers with 17 points $/ \AA^{2}$). All QM calculations were performed with the Gaussian 03 software. ${ }^{33}$

Atomic charges were then fitted to the ESPs using the RESP (restrained electrostatic potential fit) procedure, ${ }^{34}$ as implemented in the Amber 8.0 antechamber module. ${ }^{35}$ The RESP procedure for the ff02 simulations differs slightly from that for the other force fields: ${ }^{22}$ To take into account the self-polarization in the RESP procedure, the ESPs around the molecule owing to induced dipoles $\left(\mathrm{ESP}_{\text {ind }}\right)$ were calculated. Then a new set of points charges were fitted to the difference between $\mathrm{ESP}_{\mathrm{QM}}$ and $\mathrm{ESP}_{\text {ind }}$. The new charges were used in the next iteration to selfpolarize the molecule and to calculate the new $\mathrm{ESP}_{\text {ind }}$. This was repeated iteratively until the charges did not change. All atoms in the seven biotin analogues were assigned standard Amber atom types.

The BTN2 and BTN5 biotin analogues include a guanidinium group that is positively charged in neutral aqueous solution. However, it has been shown that it is the neutral form of the ligand that binds to the protein. ${ }^{27,28}$ Therefore, we simulated only the neutral form of these molecules (as in previous
investigations ${ }^{12}$) and the corresponding experimental binding affinities were corrected for the fact that only the neutral form of the ligand binds to the protein. ${ }^{27,28}$

Charges for a neutral arginine residue were also determined by the same methods for ff94 and ff03. The RESP calculations were based on the full dipeptide, optimized at the HF/6-31G* level. The resulting charges of the biotin analogues and the neutral arginine residues are given in Tables $\mathrm{S} 1-\mathrm{S} 4$ in the Supporting Information.

The Protein. All calculations in this investigation are based on the X-ray structure of biotin complexed with avidin (PDB accession code 1avd). ${ }^{38}$ The seven different biotin analogues were built into the crystal structure using Spartan. ${ }^{36}$ The building was trivial (deletion or replacement of existing atoms) for all molecules except for BTN4, for which a $\mathrm{CH}_{3} \mathrm{OOC}$ - group had to be built into the crystal structure.

Avidin is a tetramer composed of four identical subunits. The four biotin sites are independent of each other, so the calculations were made on one of the sites (subunit A), whereas the other three sites were considered as a part of the protein. ${ }^{12}$

All Asp and Glu residues were assumed to be negatively charged, and all Lys and Arg residues were positively charged (if not otherwise stated). From a detailed study of the hydrogenbond structure and the solvent exposure, it was decided that the single His residue in each subunit of avidin is protonated on the $\mathrm{N}^{\delta 1}$ atom. All the other residues were assumed to be neutral. The first and last residues in the protein were omitted in the calculations because they are not visible in the crystal structure.

MM/PBSA. $\Delta G_{\text {bind }}$ values of each of the seven biotin analogues were calculated according to eqs $2-4$ for all snapshots. The energies were automatically obtained using the mm_pbsa module of Amber 8.0.35 The electrostatic and van der Waals energies were calculated by the sander module. The polar solvation energy was calculated with the finite-difference PB equation solver DelPhi I^{37} (results denoted $\Delta G_{\text {PB }}$ in the following) because the Amber pbsa module gave dubious results for the charged ligands (more than $80 \mathrm{~kJ} / \mathrm{mol}$ too negative binding affinities). These calculations employed a grid spacing of $0.5 \AA$, and the grid size was adapted so that the longest linear dimension extended 10% outside the protein. Test calculations, as well as earlier studies, ${ }^{12}$ have shown that these parameters give stable and converged energies. Parse radii ${ }^{38}$ and the standard Amber charges (different for the four force fields tested) were employed for all atoms. For comparison, the solvation energy was also calculated by the default generalized Born method in Amber 8.0 (viz. $\mathrm{GB}^{\mathrm{OBC}}$ with α, β, and γ set to $1.0,0.8$, and 4.85 , respectively). ${ }^{39}$

The entropy was estimated by a normal-mode analysis of the vibration frequencies, calculated with the Amber nmode module. This is very memory demanding, and therefore, the entire protein could not be used. Instead, only residues with any atom within $8 \AA$ of the ligand in the last snapshot were included in these calculations. ${ }^{12}$ The truncated systems were minimized using a distance-dependent dielectric constant of $\epsilon=4 r$, and the entropies were then calculated using classical statistical formulas. ${ }^{40}$

The nonpolar solvation energy was calculated from the solvent-accessible surface area (SASA), obtained with the Amber molsurf module using a probe radius of $1.4 \AA . G_{\mathrm{np}}$ was obtained from the SASA according to

$$
\begin{equation*}
G_{\mathrm{np}}=\gamma \mathrm{SASA}+b \tag{5}
\end{equation*}
$$

with $\gamma=0.0227 \mathrm{~kJ} \mathrm{~mol}^{-1} \AA^{-2}$ and $b=3.85 \mathrm{~kJ} \mathrm{~mol}^{-1} . .^{12}$

The MM/PBSA procedure and all parameters in this investigation were chosen to reproduce as closely as possible previous MM/PBSA calculations, ${ }^{8}$ especially those for the avidin-biotin complexes. ${ }^{12}$ MM/PBSA energy calculations were performed with the Amber ff94, ${ }^{19} \mathrm{ff} 99,{ }^{20}$ ff03, ${ }^{21}$ and $\mathrm{ff0} 2^{22}$ force fields. The calculations are denoted $94,99,03$, and 02 in the following. The four force fields differ mainly in the treatment of the electrostatics (not ff94 and ff99, which employ the same charges).

If not otherwise stated, all residues in the protein had their standard charge (specified above). However, this gives a net charge of +18 . In reality, these positive charges are compensated by counterions. To determine if the net charge of the protein affects $\Delta G_{\text {bind }}$, the complex was neutralized in some calculations by turning off the minimum number of lysine residues that were furthest away from the ligand site. These calculations are denoted 03n below.

Another common way to deal with a charged protein is to scale the charges (i.e., to assume that all interactions are damped by a dielectric constant). In a few calculations, we evaluated the effect of such a treatment by scaling all charges in the protein by a factor of 4 . These calculations are denoted 03 s .

QM Charges. For one set of snapshots, we recalculated the charges on the atoms with QM methods (denoted QM below). Charges for all residues in the complex were calculated with the HF/6-31G* method based on the snapshots from the 940 oh simulation. For each snapshot, a separate set of charges were calculated. The protein was divided into dipeptides (i.e., each residue was capped by $\mathrm{CH}_{3} \mathrm{CO}-$ and $-\mathrm{NHCH}_{3}$ groups), and the charges were calculated for these using the standard MerzKollman method ${ }^{43}$ (the RESP method will only deteriorate the charges when the correct conformation is used, owing to its additional restraint of the charges toward zero ${ }^{41}$). The ESP charges on the capping groups were then discarded, whereas the charge on the C^{α} atom was adapted so that the whole residue had an integer charge. The calculations took ~ 150 CPU days in total for the 70000 calculations of all residues in all complexes and snapshots (~ 3 CPU minutes per residue on the average).

MM/PBSA with ff02. The use of the polarizable ff02 force field in the MM/PBSA calculations is not straightforward because standard programs to calculate PB solvation energies (e.g., DelPhi II, ${ }^{54}$ pbsa, ${ }^{35}$ or Mead ${ }^{42}$) cannot not include the effect of polarization in a self-consistent way. A primitive but simple solution to this problem is to simulate the induced dipole moments by a pair of nearby charges. We can use two charges (q_{1} and q_{2}) to reproduce both the Amber charge (q) and the induced dipole moment (μ) by

$$
\begin{align*}
& q_{1}-q_{2}=\mu / r \tag{6}\\
& q_{1}+q_{2}=q \tag{7}
\end{align*}
$$

where the vector between the two charges, r, has the same direction as the dipole moment. After some test calculations, we decided to set the length of r to $0.01 \AA$. The dipole moments were taken from a self-consistent energy calculation on each snapshot, including all the explicit water molecules in the simulation. This gives a correct description of the polarization in the RL complex, but not in the isolated protein because the water molecules are not allowed to reorganize after the removal of the ligand and the empty ligand binding site is not filled with water molecules. Similar problems apply to the isolated ligand. We currently try to implement a solvent model that may incorporate polarization in a self-consistent way.

Geometries. The main goal of this investigation was to compare different methods to obtain the geometries (snapshots) at which the MM/PBSA energies are calculated. These are typically obtained by MD simulations, and the MD calculations normally dominate the computer time consumption (e.g., 55 h for the 03 oh simulation of one complex, compared to $\sim 0.5 \mathrm{~h}$ for the corresponding MM/PBSA energy calculation). Therefore, we tested several different ways to generate the geometries.

In all simulations, the SHAKE algorithm ${ }^{43}$ was used to constrain all bond lengths and the simulations were run by the Amber 8.0 sander module. ${ }^{39}$ The temperature was kept constant at 300 K using the Berendsen weak-coupling algorithm ${ }^{44}$ with a time constant of 1 ps . The MD time step was 2 fs , and the nonbonded cutoff was $8 \AA$ for the periodic-boundary simulations and $17 \AA$ in the other simulations. The nonbonded pair list was updated every 50 fs .

If not otherwise stated, we used the following protocol: The complex was first optimized by 1000 steps of minimization, keeping all atoms, except water molecules (if present) and hydrogen atoms, restrained to their crystal positions with a force constant of $418 \mathrm{~kJ} \mathrm{~mol}^{-1} \AA^{-2}$. This was followed by a 20 ps MD equilibration with a constant pressure (isotropic pressure scaling with a force constant of 1 ps) and the restraining force constant reduced to $214 \mathrm{~kJ} \mathrm{~mol}^{-1} \AA^{-2}$, a 50 ps equilibration with constant pressure and no restraints, a 200 ps MD equilibration with constant volume, and finally a 200 ps MD simulation with coordinates saved every 10 ps for a total of 20 snapshots. In calculations without periodic boundary conditions, only the 20 and 200 ps MD simulations were run.

In some previous MM/PBSA applications, longer MD simulations and more snapshots ($3-500 \mathrm{ps}$ and 50 snapshots) have been used. ${ }^{12,15}$ However, it was recently suggested that this gives only a little gain in accuracy compared to shorter simulations with fewer snapshots. ${ }^{30}$ Therefore, we used only 20 snapshots in these calculations except in two calculations, which were prolonged to 2000 ps and 200 snapshots (94ohl and $030 h l)$. Five different simulation methods were tested, as described below.

1. Periodic Boundary Simulations (oh). The complex was solvated in an octahedral box with water molecules extending at least $10 \AA$ outside the protein on all sides. The electrostatics were treated with the particle-mesh Ewald method ${ }^{45}$ with a grid size of $80^{3} \AA$, a fourth-order B-spline interpolation, and a tolerance of 10^{-5}. Simulations were performed with the ff03 (03 oh), ff99 (99 oh), and ff94 (94 oh) force fields. With the polarizable ff02 force field, two simulations were performed: one with the nonpolarizable TIP3P ${ }^{46}$ water model (used in the ff094 and ff03 calculations, 02oht) and one with the polarizable POL3 ${ }^{47}$ water model (02 ohp). Two additional simulations with ff03 were performed to test the influence of the total charge of the protein on the results: one in which the charge of the complex was compensated by the addition of the proper number of negative counterions (14 or 18 chloride ions, depending on whether the ligand was charged or not; 03ohc) and one in which the proper number of positively charged residues far from the ligand were neutralized (03ohn) (in all the other periodicboundary calculations, Amber automatically neutralizes the protein by adding a uniform neutralizing plasma to the system).
2. Spherical System with a Reaction-Field Correction (94sr and 03sr). In these simulation, we used a spherical system (43.4 \AA radius) filled with explicit water molecules instead. A numerical PB solver was used to calculate the reaction field outside the water sphere. ${ }^{48}$ The dielectric constant was 1 inside
and 80 outside the sphere. The force constant for keeping the water molecules inside the sphere was set to $41.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \AA^{-2}$.

3. Simulations of a Small Spherical System (94 k and 03 k).

 Two simulations were run in a way to reproduce the earlier MM/PBSA calculations on the avidin-biotin complex ${ }^{12}$ as closely as possible. The complex was neutralized by turning off the minimum number of arginine and lysine residues that were furthest from the ligand. A $20 \AA$ sphere of water molecules was added to the complex, centered on the ligand. The system was then minimized for 1000 steps and equilibrated by a 30 ps MD simulation with everything except solvent and hydrogen atoms fixed in position. Next, the complex was minimized by 4×1000 steps, keeping atoms more than $18 \AA$ from the ligand fixed and with a restraint on everything except water molecules to the crystal structure. The restraint force constant was successively reduced in the four simulations: $105,75,46$, and $21 \mathrm{~kJ} \mathrm{~mol}^{-1} \AA^{-2}$, respectively. All solvent water molecules were allowed to move freely. This was followed by a 30 ps MD equilibration with atoms more than $15.5 \AA$ from the ligand restrained toward the crystal structure with a force constant of $84 \mathrm{~kJ} \mathrm{~mol}^{-1} \AA^{-2}$. After that, additional water molecules were added to fill the sphere better and the system was equilibrated by a 30 ps MD simulation. Finally, a 300 ps MD simulation was run, during which coordinates were saved every 6 ps for a total of 50 snapshots.4. Implicit Water Models (03gb, 03cd, and 03dd). In an attempt to reduce the time consumption of the MD simulations, we run four simulations without explicit solvent molecules. In the 03 gb simulation, the generalized Born $\mathrm{GB}^{\mathrm{OBC}}$ method was employed (model II, igb $=5$). ${ }^{39}$ We tried both a calculation without any explicit water molecules and a calculation with a sphere of explicit water molecules around the ligand (with a radius of $20 \AA, 03 \mathrm{gbs}$).

Another way to avoid explicit water molecules is to use a dielectric constant. We tested two calculations of this type, one with a fixed dielectric constant of $4(03 \mathrm{~cd})$ and one with a distance-dependent dielectric constant $(\epsilon=4 r ; 03 \mathrm{dd})$. The latter approach is used in the calculation of entropy in the MM/PBSA scheme. ${ }^{12}$
5. Minimized Structures ($\mathbf{9 4} \mathrm{mm}$ and $\mathbf{0 3} \mathbf{~ m m}$). Recently, it has been suggested that more stable results are actually obtained if a single minimized structure is used instead of snapshots from a MD simulation. ${ }^{38}$ Therefore, we also optimized the crystal structure (with explicit water molecules in an octahedral box from the 94oh and 03oh simulations) by 1000 steps of minimization. To test how much the results depend on the starting structure, we also minimized all 20 snapshots from the 03oh simulations.

Nomenclature. To simplify the discussion throughout this article, we denote the various calculations by g / e, where g specifies how the geometries (snapshots) were obtained and e specifies what force field was used for the MM/PBSA energy calculations. The geometry generation methods are periodicboundary simulations in an truncated octahedral box (oh), a spherical system with a reaction-field correction (sr), a smaller spherical system without any corrections for long-range interactions (k), implicit solvent calculations with the generalized Born method (gb) or with a dielectric function, which was either a constant of 4 (cd) or distance-dependent (dd), or by minimized structures (rather than snapshots from MD simulations for the other methods, mm). An " 1 " appended to the geometry method means that longer simulations were used (2000 ps), whereas " n " means that the protein was neutralized and " c " means that counterions were used in the simulations to neutralize the

Table 1. Results of the 03oh/03 Calculations, Showing the Various Energy Terms and the Standard Deviation of the Results for the Simulations of BTN1 and BTN7 $(\mathrm{kJ} / \mathrm{mol})^{a}$

ligand	energy terms (kJ/mol)							standard deviation	
	BTN1	BTN2	BTN3	BTN4	BTN5	BTN6	BTN7	BTN1	BTN7
$\Delta E_{\text {el }}$	-1224.4	-1295.3	-1286.8	-173.6	-83.3	-50.5	-108.5	45.8	20.8
ΔE_{vdW}	-147.9	-149.5	-131.5	-199.5	-127.9	-128.2	-49.0	15.8	11.2
$\Delta G_{\text {np }}$	-16.9	-16.9	-16.8	-20.8	-16.4	-16.4	-10.6	0.2	0.2
$\Delta G_{\text {PB }}$	1224.2	1321.3	1259.4	265.7	146.4	122.8	123.9	30.1	13.3
$-T \Delta S_{\text {MM }}$	81.4	96.2	69.7	81.5	66.8	65.5	28.0	45.6	57.1
$\Delta G_{\text {bind }}(\mathrm{PB})$	-83.7	-44.1	-105.9	-46.7	-14.4	-6.7	-16.2	47.1	62.4
$\Delta G_{\text {bind }}\left(\operatorname{expt}^{28}\right)$	-85.4	-59.8	-58.6	-36.8	-34.3	-20.9	-18.8		
$\Delta \Delta G$ (PB)	1.6	15.7	-47.4	-9.9	20.0	14.2	2.6		
$\Delta E_{\text {el }}+\Delta G_{\text {PB }}$	-0.3	26.1	-27.4	92.1	63.2	72.3	15.4	22.4	19.5
ΔG_{GB}	1194.8	1291.6	1245.0	204.8	103.0	68.9	113.0	11.3	14.4
$\Delta G_{\text {bind }}(\mathrm{GB})$	-113.1	-73.8	-120.4	-107.7	-57.8	-60.6	-27.2	47.1	60.3
$\Delta \Delta G(\mathrm{~GB})$	-27.7	-14.0	-61.8	-70.9	-23.5	-39.7	-8.3		

${ }^{a} \Delta \Delta G$ is the deviation between the calculated and experimental values for $\Delta G_{\mathrm{b} \text { ind }}$.
protein. The methods were described in the previous section, and they can be performed with any of the four tested force fields (ff94, ff99, ff03, or ff02). The 02oht and 02ohp simulations were performed with the nonpolarizable TIP3P and the polarizable POL3 water models, respectively.

Likewise, the energy calculations can be performed with any of the four force fields or with QM charges calculated on the actual conformation of each amino acid in the proteins (QM). An " n ", " s ", or " "b" appended to the energy force field indicates that the protein was neutralized before the energy calculation, that all charges were scaled by a dielectric constant of 4 , or that the solvation calculations were performed at an ionic strength of 0.1 M , respectively. A " g " denotes that the generalized Born solvation energies were used instead of the PB energies. Thus, 03oh/94 means that the geometries were obtained using ff03 with periodic boundary conditions in an octahedral box and the energies were calculated using ff94.

Results and Discussion

Energy Terms and Uncertainty. The results of a typical set of MM/PBSA calculations ($03 \mathrm{oh} / 03$) for the binding of the seven biotin analogues to avidin are given in Table 1. The table shows the five energy terms in eqs 3 and 4, as well as the total binding energy and the experimental results. ${ }^{28}$ The total $\Delta G_{\text {bind }}$ is the sum of the first five terms (because we list $-T \Delta S_{\mathrm{MM}}$ in the table). It can be seen that the electrostatics, van der Waals, and nonpolar solvation terms are favorable for the binding whereas the polar solvation and entropy terms are unfavorable for the binding in all the seven complexes.

The energies are dominated by the electrostatics and polar solvation terms, especially for the three first biotin analogues (BTN1-BTN3), which have a net charge of -1 (the other four molecules are neutral). However, these two energies nearly cancel, as can be seen in the fourth row from the bottom. This is a manifestation of the dielectric screening of the solvent. The van der Waals term is also rather large (-49 to $-200 \mathrm{~kJ} / \mathrm{mol}$), and it correlates with the size of the molecule. It has been argued that the net binding of biotin to avidin is dominated by this term. ${ }^{4}$ The nonpolar solvation term is always small (-11 to $-21 \mathrm{~kJ} / \mathrm{mol}$) and also correlates with the size of the ligand, whereas the entropy term is intermediate in size (28-96 kJ/ mol). It is dominated by the nearly constant translational and rotational contributions ($\sim 90 \mathrm{~kJ} / \mathrm{mol}$), whereas the variation is caused by the vibrational contribution.

The last two columns show how the various energy terms contribute to the statistical uncertainty of the calculations by giving the standard deviation of the various terms (the differences) in the 20 snapshots. Three terms show the largest standard

Figure 2. Relation between the experimental and calculated $\Delta G_{\text {bind }}$ for the $03 \mathrm{oh} / 03$ calculations, together with the best regression line. The dotted line is $y=x$.
deviations: $E_{\mathrm{el}}, G_{\text {Solv }}$, and S_{MM}. However, owing to the cancellation of the former two terms, the sum of these two terms have a much smaller standard deviation $(\sim 20 \mathrm{~kJ} / \mathrm{mol})$. Therefore, the standard deviation of $\Delta G_{\text {bind }}$ is dominated by the contribution from the entropy, and it is quite large ($47-67 \mathrm{~kJ} / \mathrm{mol}$ for the seven biotin analogues). Thus, efforts to increase the precision of the MM/PBSA method should concentrate on that term. However, it should be noted that the standard deviation of the mean value for $\Delta G_{\text {bind }}$ is lower by a factor of $(20)^{1 / 2}=4.5$ ($5-15 \mathrm{~kJ} / \mathrm{mol}$), and this value can be improved by studying more snapshots (the standard deviations of the mean value for $\Delta G_{\text {bind }}$ in the longer $03 \mathrm{ohl} / 03$ simulations are only $3-4 \mathrm{~kJ} / \mathrm{mol}$).

The difference between the calculated and experiment values for $\Delta G_{\text {bind }}$ varies from -47 to $+20 \mathrm{~kJ} / \mathrm{mol}$, giving an average deviation of $0.5 \mathrm{~kJ} / \mathrm{mol}$ and a mean absolute deviation (MAD) of $16 \mathrm{~kJ} / \mathrm{mol}$, i.e., close to the statistical precision of the method. The relation between the calculated and estimated binding affinities is plotted in Figure 2, showing that there is no systematic error in the method (i.e., that the absolute binding energies are almost as accurate as the relative energies (the best regression line gives a MAD of $12 \mathrm{~kJ} / \mathrm{mol}$). In addition, the points are rather scattered.

Our results are quite similar to those reported in the original MM/PBSA investigation, ${ }^{12}$ especially the $94 \mathrm{k} / 94$ calculations, which was designed to be as similar as possible. However some details differ. For example, the charges used for the six biotin analogues are not available and had to be recalculated. Therefore, the individual energy terms may differ by up to 45 $\mathrm{kJ} / \mathrm{mol}$. However, the MAD for the two calculations are quite

Table 2. Results of the MM/PBSA Calculations: Errors for Calculated Values of $\Delta G_{\text {bind }}$ for the Various Biotin Analogues (Compared to the Experimental Data ${ }^{28}$), the Mean Absolute Deviation (MAD), and the Correlation Coefficient (r^{2}) for a Fit of the Calculated Values to the Experimental Data ${ }^{a}$

${ }^{a}$ The MAD of the calculated affinities, translated by their average error (TR MAD), is also included, as well as the MAD and r^{2} obtained when the same value of $T \Delta S_{\mathrm{MM}}$ is used for all calculations, $90.9,107.4,105.1,78.3,50.4,56.1$, and $33.5 \mathrm{~kJ} / \mathrm{mol}$, for the seven biotin analogues, respectively, obtained as the average deviations of the calculated binding affinities without the $T \Delta S_{\mathrm{MM}}$ term from experimental values for the 15 best calculations, namely, the oh, sr, and k calculations with ff 94 , ff99, and ff03. Other choices gave similar, but slightly worse, results (MAD^{*} and $r^{2 *}$). All energies are in $\mathrm{kJ} / \mathrm{mol}{ }^{b}$ One or two subunits dissociate from the other subunits during the simulation.
similar, 16 and $13 \mathrm{~kJ} / \mathrm{mol}$. This shows that our method works properly and reproduces the original MM/PBSA method closely.

GB Solvation Energies. The last three rows in Table 1 show the results using an alternative method to calculate $\Delta G_{\text {Solv }}$, the generalized Born GB ${ }^{\text {OBC }}$ method ${ }^{39}$ (thus, actually representing a MM/GBSA method; $03 \mathrm{oh} / 03 \mathrm{~g}$). These calculations are somewhat faster than the PB calculations, but they give much worse results. The MAD is $16 \mathrm{~kJ} / \mathrm{mol}$ with the PB method but is $35 \mathrm{~kJ} / \mathrm{mol}$ with the GB method. Moreover, the estimated $\Delta G_{\text {bind }}$ with the GB is consistently lower than the experimental data (by $8-71 \mathrm{~kJ} / \mathrm{mol}$), whereas the results with the PB method is rather well scattered around the experimental values (average error of $-0.5 \mathrm{~kJ} / \mathrm{mol}$). Of course, this means that the relative binding affinities with GB are better than the absolute ones. If the average error of the calculated binding affinities is subtracted from all the affinities, a much smaller MAD (TR MAD) is obtained with GB, $19 \mathrm{~kJ} / \mathrm{mol}$, but this is still larger than for the PB results ($16 \mathrm{~kJ} / \mathrm{mol}$ for both MAD and TR MAD). Moreover, the PB results give a better correlation to the experimental results than the GB results (correlation coefficient r^{2} of 0.65 and 0.53). Similar results are also obtained with the other methods (e.g., $\mathrm{MAD}=16$ and $55 \mathrm{~kJ} / \mathrm{mol}, \mathrm{TR} \mathrm{MAD}=15$ and $16 \mathrm{~kJ} / \mathrm{mol}$, and
$r^{2}=0.88$ and 0.73 for $94 \mathrm{oh} / 94$ and $94 \mathrm{oh} / 94 \mathrm{~g}$, respectively). Therefore, we conclude that the PB solvation energies give better results than the GB energies, and all results in the rest of this article are obtained with $\Delta G_{\text {Solv }}$ calculated with the PB method.

Effect of Protein Net Charge. The calculated binding free energies for the various tested methods (listed as the errors compared to the experimental values ${ }^{28}$) are shown in Table 2, together with the MAD, as well as the slope, intercept, and correlation coefficient $\left(r^{2}\right)$ for the relation between the calculated and experimental values for each method, and the MAD of the calculated affinities corrected by their average error (TR MAD). The latter results were included to check if the methods may have systematic errors but still give a good correlation (r^{2} close to 1 and a low TR MAD) between calculated and experimental data. We have seen that the largest variation comes from the $T \Delta S_{\mathrm{MM}}$ term. This variation is so large that it sometimes obscures the results. Therefore, we also give in Table 2 results that were obtained with the same value of $T \Delta S_{\mathrm{MM}}$ in all calculations (see the footnote of Table 2). These results are called MAD* and $r^{2 *}$ in Table 2.

We started to investigate the effect of the protein net charge on the results. As mentioned above, the 03oh/03 method gave
a MAD of $16 \mathrm{~kJ} / \mathrm{mol}$ and $r^{2}=0.65$. In these calculations, the MD simulations were performed on a protein that was neutralized by the addition of a uniform neutralizing plasma, whereas the energy calculations were performed on the fully charged protein. When the complex was neutralized in the energy calculations ($03 \mathrm{oh} / 03 \mathrm{n}$), the binding free energies for the various ligands change by $3 \mathrm{~kJ} / \mathrm{mol}$ at most. This shows that charges far from the binding site have a minor effect on the binding affinity, in agreement with measurements on other systems. ${ }^{49}$ Consequently, the treatment of surface charges in the energy calculations seems to be of minor importance for the results. This is also supported by the results obtained when the polar solvation energies were calculated with an ionic strength of 0.1 ($03 \mathrm{oh} / 03 \mathrm{~b} ; \mathrm{MAD}=16 \mathrm{~kJ} / \mathrm{mol}, r^{2}=0.65$). Likewise, similar results were obtained if the MD simulations are also run with a neutralized protein ($03 \mathrm{ohn} / 03 ; \mathrm{MAD}=13 \mathrm{~kJ} / \mathrm{mol}, r^{2}=0.92$).

On the other hand, if all the charges were scaled by a dielectric constant of 4 (again, only in the energy calculations, $03 \mathrm{oh} / 03 \mathrm{~s}$), the MAD was almost doubled ($31 \mathrm{~kJ} / \mathrm{mol}$) and the correlation became worse ($r^{2}=0.35$). Thus, a uniform scaling of all charges seems to be a poor method for treating the protein. Likewise, addition of counterions in the MD simulations gave appreciably worse results ($03 \mathrm{ohc} / 03 \mathrm{n} ; \mathrm{MAD}=27 \mathrm{~kJ} / \mathrm{mol}, r^{2}$ $=0.61)$. However, the latter deterioration seems to arise entirely from the $T \Delta S_{\mathrm{MM}}$ term: MAD* and $r^{2 *}$ are $12 \mathrm{~kJ} / \mathrm{mol}$ and 0.67 , i.e., similar to the $03 \mathrm{oh} / 03$ calculations ($11 \mathrm{~kJ} / \mathrm{mol}$ and 0.71).

Methods To Generate Geometries. After this investigation of the effect of net charges in the simulations and energy calculations, we turned to the main topic of this investigation: the influence of various simulation methods on the accuracy of the predicted binding affinities. In this investigation, we kept the full charge of the protein (not in 03 k) and concentrated on simulations and energy calculations with ff03.

As mentioned above, the periodic 03oh/03 calculations gave a MAD of $16 \mathrm{~kJ} / \mathrm{mol}$. Interestingly, the nonperiodic 03sr/03 simulations (with a spherical system and a reaction-field correction) gave the same MAD (Table 2). However, the linear fits of the $03 \mathrm{sr} / 03$ method gave a much better correlation ($r^{2}=$ 0.98 , compared to 0.65), but this is not a general result. With ff94, 94oh/94 actually gives slightly better MAD and r^{2} than $94 \mathrm{sr} / 94(14 \mathrm{~kJ} / \mathrm{mol}$ and 0.96 , compared to $19 \mathrm{~kJ} / \mathrm{mol}$ and 0.83). Therefore, the two methods seem to give results of a similar accuracy.

Next, we studied the effect of simulating only a relatively small part of the protein. In the 03 k simulations, water molecules were added as a spherical cap of $20 \AA$ around the center of the ligand (compared to $43.4 \AA$ for the full system in the 03 sr calculations) and only amino acids within $18 \AA$ of the ligand were allowed to move. This is the same protocol used in the original MM/PBSA calculations on the biotin-avidin complex. ${ }^{12}$ From Table 2, it can be seen that such a protocol ($03 \mathrm{k} / 03$) gives slightly worse MAD than for the $03 \mathrm{oh} / 003$ and $03 \mathrm{sr} / 03$ calculations (18 , compared to $16 \mathrm{~kJ} / \mathrm{mol}$) but a similar correlation $\left(r^{2}=0.74\right)$. Likewise, the $94 \mathrm{k} / 94$ calculations give results (MAD $=16 \mathrm{~kJ} / \mathrm{mol}, r^{2}=0.88$) similar to results from the 94oh/ 94 and $94 \mathrm{sr} / 94$ calculations.

The importance of modeling the solvent was also tested. The geometries of the $03 \mathrm{oh}, 03 \mathrm{sr}$, and 03 k simulations were obtained with explicit water molecules, but in the $03 \mathrm{gb} / 03$ simulation, the implicit $\mathrm{GB}^{\mathrm{OBC}}$ method was used instead. Interestingly, it turned out that the avidin tetramer separated into two dimers in five of the seven $G B$ simulations, indicating that the $G B^{O B C}$ method has severe problems describing intermolecular interactions. If we ignore this problem and calculate the MM/PBSA
energies for the dimer that included the ligand, the results were quite poor, with a MAD of $41 \mathrm{~kJ} / \mathrm{mol}$ and $r^{2}=0.42$ (Table 2). This is much worse than for the calculations with explicit water molecules.

We also tested one set of calculations with the $\mathrm{GB}^{\mathrm{OBC}}$ method, in which we included a small solvent cap $(20 \AA)$ around the ligand. However, in these simulations, the water cap moved away from the ligand or, if the cap was forced to stay around the ligand, the ligand and the cap dissociated from the protein. Therefore, no energies were calculated from these structures.

In addition, we performed two sets of simulations without explicit and implicit water molecules. Instead, the electrostatics interactions were scaled by a dielectric function, which was either a constant of 4 (the $03 \mathrm{~cd} / 03$ simulations) or distancedependent ($\epsilon=4 r$; the $03 \mathrm{dd} / 03$ simulations). The latter is the same method employed in the entropy calculations in MM/ PBSA. ${ }^{8,12}$ Interestingly, both methods gave very poor results, with MADs of 145 and $108 \mathrm{~kJ} / \mathrm{mol}$, respectively (Table 2). Thus, we can conclude that an explicit solvent model is essential for the generation of geometries, even if all energies are calculated with the same implicit solvent PB method. Currently, no implicit solvent model seems to give any proper geometries.

Recently, it has been suggested ${ }^{30}$ that a single minimized structure might be used instead of the time-consuming MD simulation. In the $03 \mathrm{~mm} / 03$ calculations, the crystal structure with added explicit solvent water molecules (as in the 03oh calculations) was minimized and the energy calculated on the single minimized structure (using explicit solvent molecules in a periodic box, i.e., the same type as in the 03 oh simulations). From Table 2, it is seen that such a treatment in most cases gave good results, but for some inhibitors, completely erroneous energies were obtained (especially for the problematic BTN4 molecule but also for BTN5 and sometimes BTN6).

Moreover, these calculations were quite unstable. If the minimizations were started from different structures, quite different results were obtained, as can be seen in Table 3 (the minimizations were started from the 20 snapshots of the 03 oh simulation; standard deviation of $50 \mathrm{~kJ} / \mathrm{mol}$ and errors of up to $142 \mathrm{~kJ} / \mathrm{mol})$. However, it can also be seen that the variation in the calculated $\Delta G_{\text {bind }}$ arises almost entirely from the solute entropy; the sum of the other four terms (second last column) has a standard deviation of only $13 \mathrm{~kJ} / \mathrm{mol}$. If the best value of $T \Delta S_{\mathrm{MM}}$ is added to this estimate (giving a vanishing average error), a MAD of $10 \mathrm{~kJ} / \mathrm{mol}$ is obtained. This indicates that the method for estimating ΔS needs to be improved.

When the performance of the various simulation methods is compared, it is also important to take into account their respective computer time consumption. The CPU time consumption (on a 64-bit AMD Opteron 148 processor at 2.2 GHz with 1 GB memory) for the MD simulations of BTN1 with the various protocols is shown in Figure 3. This figure shows that 03 sr is the most expensive method, requiring almost 5 times as much computer time as the 03 oh method (which can use a smaller nonbonded cutoff). Another factor of 2 can be saved by using the 03 k simulations. Considering that these three simulation methods gave similar results, the 03k simulation seems to be best choice in terms of computer time, although the other two approaches are theoretically more accurate.

The calculations without an explicit solvent (03dd and 03cd) are another factor of 2 faster than the 03 k calculations, but they gave very poor results. Of course, the MM calculations were fastest, 25 times faster than the corresponding MD simulation. If it is possible to identify and correct the problematic cases with MM structures, this is undoubtedly the best choice as a

Table 3. Energy Contributions ($\mathrm{kJ} / \mathrm{mol}$) to the Binding Free Energy Obtained with the $03 \mathrm{~mm} / 03$ Method, Starting the Minimization from the 20 Snapshots from the 03oh/03 Simulations of the BTN1 Ligand ${ }^{a}$

snapshot	$\Delta E_{\text {el }}$	ΔE_{vdW}	ΔG_{np}	$\Delta G_{\text {PB }}$	$T \Delta S_{\text {MM }}$	$\Delta G_{\text {bind }}$	$\Delta \Delta G$	$\Delta G_{\text {bind,noS }}$	$\Delta \Delta G_{\text {bestS }}$
1	-1195	-166	-17	1242	-148	12	97	-137	-5
2	-1174	-169	-18	1250	-24	-86	-1	-110	22
3	-1208	-183	-17	1274	-15	-120	-34	-134	-2
4	-1181	-175	-17	1269	-90	-15	70	-105	27
5	-1209	-172	-17	1259	-133	-7	79	-140	-8
6	-1194	-173	-17	1244	-107	-33	52	-140	-9
7	-1195	-175	-17	1262	-70	-55	30	-126	6
8	-1189	-176	-17	1259	-41	-82	3	-124	8
9	-1193	-169	-17	1272	-160	53	138	-107	25
10	-1235	-166	-17	1286	-41	-92	-7	-133	-1
11	-1251	-172	-17	1297	-34	-110	-25	-144	-12
12	-1204	-174	-17	1267	-59	-69	17	-128	4
13	-1209	-180	-17	1272	-138	4	89	-134	-3
14	-1198	-171	-17	1262	-92	-32	54	-124	8
15	-1230	-179	-17	1289	-152	15	101	-136	-4
16	-1248	-177	-17	1303	-98	-42	44	-140	-8
17	-1214	-180	-17	1269	-200	57	142	-143	-11
18	-1247	-182	-17	1314	-87	-46	39	-133	-1
19	-1267	-179	-17	1315	-117	-32	54	-149	-17
20	-1232	-175	-17	1274	-85	-65	20	-150	-18
average	-1214	-175	-17	1274	-95	-37	48	-132	0
std dev	26	5	0	21	50	50	50	13	13

${ }^{a} \Delta \Delta G$ is the error in ΔG_{bind} compared to the experimental results. ${ }^{28} \Delta G_{\mathrm{bind}, \mathrm{noS}}=\Delta G_{\mathrm{bind}}+T \Delta S_{\mathrm{MM}}$. The $\Delta \Delta G_{\mathrm{bestS}}$ is the corresponding error if the best value of $T \Delta S_{\mathrm{MM}}$ is added to this estimate (giving a vanishing average error).

Figure 3. Computer time used by the various geometry methods to generate all the snapshots for BTN1.
compromise between accuracy and time consumption. Otherwise, the original 03 k method is probably the best choice. Interestingly, the generalized Born $\mathrm{GB}^{O B C}$ method consumed 3 times as much time as the 03oh simulation and gave a very poor results. Undoubtedly, this is the poorest choice of simulation method.

Force Fields. In this investigation, we have also compared the performance in the MM/PBSA method with four different force fields available in the Amber software: the Amber ff94, ff99, ff03, and ff02 force fields. All four force fields use mostly the same parameters for the bonded and van der Waals interactions and differ mainly in the treatment of the electrostatics.

In the Cornell et al. force field (ff94), ${ }^{19}$ charges are derived using the quantum mechanical Hartree-Fock (HF) method with the $6-31 G^{*}$ basis set. Such a method exaggerates the dipole moment of most residues by $10-20 \%$, thereby building in an average way the effect of polarization that would be expected in aqueous solutions. The Amber ff 99^{20} is a relatively minor modification of this force field in which some of the dihedral terms are improved (but the charges and van der Waals parameters are not changed).

The Duan et al. (2003) force field ${ }^{21}$ is a modification of the ff99 force field. The main change is that all the charges have
been recalculated using the density functional B3LYP method with the cc-pVTZ basis set, including solvent effects with the IEFPCM method ${ }^{44}$ and a dielectric constant of 4 . Thus, an improved QM method is used to calculate the charges, which should give essentially the correct gas-phase dipole moment, and then solvation effects in a protein-like continuum environment are explicitly introduced by the IEFPCM method.

Finally, the Amber ff02 force field is a polarizable variant of ff99 (it uses the same bonded and van der Waals parameters). The charges were determined by vacuum B3LYP/cc-pVTZ calculations. ${ }^{22}$ Then induction effects are explicitly included in the MM calculations by the use of isotropic dipole polarizabilities on all atoms. These give rise to an induced dipole moment on all atoms, which are treated as a dynamic variable in the MD simulations but are solved self-consistently for the MM/ PBSA energy calculations.

Interestingly, the results in Table 2 show no significant difference between ff94, ff99, and ff03; they all give MADs around $16 \mathrm{~kJ} / \mathrm{mol}(14-19 \mathrm{~kJ} / \mathrm{mol})$ for the best simulation methods (oh, sr, and k) and also similar (but more varying) correlation coefficients ($r^{2}=0.64-0.98$). Thus, there is no significant improvement of the newer ff03. There are at least two possible explanations for this somewhat unexpected result. First, the B3LYP/cc-pVTZ calculations undoubtedly give better gas-phase properties than HF/6-31G*, but there is no guarantee that the IEFPCM continuum calculations with $\epsilon=4$ should reproduce the strongly inhomogeneous dielectric environment in a protein better than the HF/6-31G* calculations; both methods are very crude solutions to the induction problem. Second, the three force fields share the same van der Waals parameters, which were developed for ff94. Therefore, it is likely that they perform better with ff94 than ff03. This illustrates that it is important to optimize all the nonbonded parameters in a force field, not only the charges.

A few calculations were also performed with the polarizable ff02 force field. When the (nonpolarizable) TIP3P water model (02oht/02) was used, BTN2 and BTN3 gave large errors, leading to a high MAD of $55 \mathrm{~kJ} / \mathrm{mol}$. When the water model was changed to the polarizable POL3 model, this problem was avoided and the MAD was reduced to $18 \mathrm{~kJ} / \mathrm{mol}$, i.e., similar
to the other force fields. However, the MAD* and $r^{2 *}$ are worse than for the other force fields, $23 \mathrm{~kJ} / \mathrm{mol}$ and 0.17 . Thus, the ff02 force field, although theoretically more accurate, is not yet a better alternative to the cheaper nonpolarizable ff94 and ff03. The reason for this is probably that the MM/PBSA energy calculations were not performed in a fully self-consistent manner. Moreover, the MD simulations with ff02 took approximately 3 times as much computer time as the corresponding ff03 (and ff94 and ff09) calculations (Figure 3). Calculations with the polarizable water model was only 11% slower than the calculations with TIP3P, so there is no reason not to use polarizable water.

Mixing Force Fields. Recently, there has been a growing interest in calculating ligand binding affinities using pure QM methods. ${ }^{50,51}$ A problem with such an approach is that it is prohibitively expensive to generate geometries with these methods (perform MD simulations or energy minimizations). A possible solution would be to generate the geometries (snapshots) with one method (e.g., MM) and calculate the energies with a more expensive and accurate method. As a simple test of such an approach, we performed a number of calculations in which we mixed the various Amber force fields (i.e., we used one force field for the MD simulations and one for the MM/PBSA energy calculations).

Interestingly, the results in Table 2 indicate that this is not fully straightforward. Most of these mixed calculations gave worse results than the corresponding calculations with the same force field in both the geometry and energy calculations. This is most evident for the MAD* values. Only 2 of the 10 mixed calculations ($94 \mathrm{k} / 03$ and 02ohp/94; disregarding the 94oh/99 calculation, which differs from the 94oh/94 calculation only in the $T \Delta S_{\text {MM }}$ term) gave a MAD* within the range of the oh, sr, or k calculations with the same force field in both calculations ($7-11 \mathrm{~kJ} / \mathrm{mol}$). All the others gave MAD* values of $12-23$ $\mathrm{kJ} / \mathrm{mol}$. However, no correlation between the simulation method or force fields and the energies can be seen. Moreover, the mixed force-field calculations gave similar correlation coefficients as those with a single force field, indicating that the error is mainly in the absolute energy.

This indicates that energies obtained with a method different from the method for the geometries may be quite inaccurate, which it is somewhat unexpected considering that it is a common practice in quantum chemistry to use a cheap method to obtain the geometries and then calculate energies with more expensive and accurate methods. ${ }^{52}$ The problem with mixing force fields is that the ensemble generated by the MD simulations with one force field is not valid for the other force field. This is probably related to the nonbonded parameters. If they are too dissimilar, geometries with interactions on the steep repulsive side of the potential will be encountered, which may give rise to large and rapidly varying energy terms. This also explains the larger variation in the results of the mixed force-field calculations.

Recalculation of the Charges. It is well-known that atomic charges obtained from QM calculations depend quite strongly on the conformation of the molecule. ${ }^{41,53}$ The RESP method tries to compensate for this effect by restraining the charges toward zero, and the Amber charges are furthermore obtained by averaging over several different conformations. ${ }^{21,38,53}$ A more attractive (but computationally much more demanding) solution to this problem is to recalculate all charges for the right conformation (which is different for all residues in the protein and in all snapshots). We tested this suggestion by recalculating the ff94 charges on exactly the conformations encountered in each snapshot from the 940 oh simulation (70000 calculations
on dipeptides, taking a total of ~ 150 CPU days). Unfortunately, this did not improve the result. The MAD for the $94 \mathrm{oh} / \mathrm{QM}$ calculations was slightly larger than for the original 94oh/94 calculations (20 compared to $16 \mathrm{~kJ} / \mathrm{mol}$), and r^{2} was also lower (0.74 compared to 0.88). Again, the reason for this is probably that we used different charges in the geometry generation and in the energy calculation.

Therefore, we also tried to run a new set of MD simulations, using the QM charges from the last snapshot of the previous MD simulation. Unfortunately, all these calculations failed owing to problems with the bond-length constraints. This indicates that the new charges are too large, compared to the van der Waals parameters, giving rise to unstable trajectories. This is another function of the RESP procedure in Amber, that is, to reduce the size of ill-determined charges. ${ }^{38}$

Longer Simulations. Finally, for two systems, 03oh/03 and 94oh/94, we continued the MD simulations for a total of 2000 ps and sampled 10 times more snapshots, for which we calculated MM/PBSA energies the normal way. The results of these calculations are also included in Table 2 (03ohl/03, and 94ohl/94). It can be seen that these prolonged simulations gave results similar to those of the shorter simulations: the MADs are 9 and $16 \mathrm{~kJ} / \mathrm{mol}$, compared to 16 and $14 \mathrm{~kJ} / \mathrm{mol}$. Likewise, r^{2} are 0.92 and $0.97 \mathrm{~kJ} / \mathrm{mol}$, compared to 0.65 and 0.96 . This gives us a feeling of the uncertainties in these values.

On the other hand, the calculated binding affinities for the seven biotin analogues vary more. Most of them change by less than $9 \mathrm{~kJ} / \mathrm{mol}$, but four change by $12-18 \mathrm{~kJ} / \mathrm{mol}$ and in one case the change is as large as $41 \mathrm{~kJ} / \mathrm{mol}$. However, all the large changes in energies are connected with major changes in the conformation of the ligand or its interactions with the protein. Thus, longer equilibrations (more than 250 ps used here) seem to be needed for stable results.

Conclusions

In this paper, we have studied whether it is possible to improve the predictions of ligand binding affinities obtained by the MM/PBSA method by using different force fields and whether it is possible to save computer time by using more approximate simulation methods. We have used as a test case the binding of biotin analogues to avidin. This complex has the advantage of not involving any metals and of showing little change in the structure of the protein upon binding. This makes the predictions in this investigation more reliable, avoiding the problem that the MM/PBSA method has of giving rather poor results if the complex is quite different from the free receptor (because the complex geometry is also used for the free receptor). Moreover, the biotin ligand is rather rigid (although the carboxylate tail is fully flexible). This allows us to concentrate on the terms of main interest in this investigation, namely, the electrostatics, solvation, and van der Waals terms. Furthermore, avidin has a high net charge, allowing us to investigate how such a charge is best treated, and the ligands are both neutral and charged. Finally, the biotin-avidin complexes show an unusually large spread in binding affinities, which reduces the risk of obtaining trends by chance.

The systematic investigation has provided several interesting results.
(1) Mixing of force fields, i.e., to use one force field in the MD simulations and another in the MM/PBSA energy calculations, may give inaccurate energies. In particular, charges calculated for the correct conformation in each snapshot did not give any improved results. This may pose a problem in investigations based on very accurate energy estimates, e.g., QM calculations of the whole protein. ${ }^{50,51}$
(2) The generalized Born $\mathrm{GB}^{\mathrm{OBC}}$ method gives poor simulated structures at a high computational cost and also poor absolute binding affinities compared to the PB solvation model. This is somewhat surprising, considering that $\mathrm{GB}^{\mathrm{OBC}}$ is considered as one of the most accurate GB methods and it has been shown to perform well for several different proteins. ${ }^{39,54,55}$ However, GB models are still quite approximate ${ }^{56}$ and apparently their performance on different proteins varies.
(3) An explicit solvent model in the MD simulation is essential for accurate results. However, the three methods with explicit water (periodic-boundary conditions and electrostatics treated by the particle-mesh Ewald method, a spherical system with a reaction-field correction outside the sphere, and a restricted spherical simulated system without any corrections for long-range effects and with parts of the protein fixed) give similar results. Therefore, calculations with only a small simulated system is recommended because it is $2-10$ times faster than the other two methods, even if it is theoretically more approximate. Similar indications have also been obtained for free energy perturbations. ${ }^{57}$
(4) Simulations without explicit water molecules give poor results.
(5) The three nonpolarizable force fields tested (the Amber ff94, ff99, and ff03 force fields) give similar results. Better methods are needed for the use of a polarizable force field in MM/PBSA, giving a more consistent treatment of the solvation energy.
(6) The MM/PBSA method is insensitive to the total charge of the protein and to surface charges far from the ligand binding site. No special care for neutralizing the protein is needed. Likewise, the method works well for both neutral and charged ligands (using the PB solver DelPhi but not with the default pbsa method in Amber 8.0).
(7) It is often possible to obtain good results with single geometries obtained by energy minimization instead of averages from several structures obtained from snapshots in MD simulations. However, in some cases, entirely wrong affinities are obtained. Some filtering is needed before such a method becomes reproducible and useful.
(8) The estimated entropy has the largest variation among the five energy terms in MM/PBSA. This is also the term that has the largest demand of human and computational resources. Therefore, this term should be improved.
(9) The MM/PBSA method with the best simulation methods gives MADs of $9-19 \mathrm{~kJ} / \mathrm{mol}$, which is close to standard deviation of the results ($5-15 \mathrm{~kJ} / \mathrm{mol}$). The maximum error in the best calculations is $14-47 \mathrm{~kJ} / \mathrm{mol}$. The absolute affinities are almost as accurate as the relative affinities for the biotinavidin complex.
(10) MD simulations longer than 450 ps seem to be needed for stable results.

In conclusion, the MM/PBSA method is an attractive method to calculate absolute ligand binding affinities, especially for cases where the expected spread of the affinities is quite high. However, it is less useful for fine-tuning a drug candidate because the standard deviation of the MM/PBSA energies is quite high, $5-15 \mathrm{~kJ} / \mathrm{mol}$. This is the reason Pearlman recently obtained poor results with MM/PBSA for 16 ligands of p38 MAP kinase, which had a spread of the binding affinities of only $10 \mathrm{~kJ} / \mathrm{mol} .{ }^{57}$

However, many details of MM/PBSA remain to be improved. In particular, we have seen that the entropy term should be made less time-consuming and more stable. Moreover, methods to calculate solvation energies with a polarizable force field (and
also with higher-order multipole moments) are needed. We are currently working along these lines.

Acknowledgment. This investigation has been supported by funding from the Swedish Research Council and from AstraZeneca, as well as by computer resources of Lunarc at Lund University.

Supporting Information Available: Charges for the seven biotin analogues and the four force fields; charges for a neutral Arg residue with the ff94 and ff03 force fields. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Gohlke, H.; Klebe, G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew. Chem., Int. Ed. 2002, 41, 2644-2676.
(2) Gilson, M. K.; Given, J. A.; Bush, B. L.; McCammon, J. A. The statistical thermodynamic basis for computation of binding affinities: A critical review. Biophys. J. 1997, 72, 1047-1069.
(3) Beveridge, D. L. Dicapua, F. M. Free-energy via molecular simulation. Applications to chemical and biomolecular systems. Annu. Rev. Biophys. Biophys. Chem. 1989, 18, 431-492.
(4) Miyamoto, S.; Kollman, Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. Proteins: Struct. Funct. Genet. 1993, 16, 226-245.
(5) Wang, J.; Dixon, R.; Kollman, P. A. Ranking ligand binding affinities with avidin: A molecular dynamics-based interaction energy study. Proteins, Struct., Funct., Genet. 1999, 34, 69-81.
(6) Fujitani H.; Tanida, Y.; Ito, M.; Jayachandran, G.; Snow, C. D.; Shirts, M. R.; Sorin, E. J.; Pande, V. S. Direct calculation of the binding free energies of FKBP ligands. J. Chem. Phys. 2005, 123, 804108.
(7) Hansson, T.; Marelius, J.; Aqvist, J. Ligand binding affinity prediction by linear interaction energy methods. J. Comput.-Aided Mol. Des. 1998, 12, 27-35.
(8) Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33 (12), 889-897.
(9) Gilson, M. K.; Honig, B. Calculations of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins: Struct., Funct., Genet. 1998, 4, 7-18.
(10) Hermann, R. B. Theory of hydrophobic bonding. II. Correlation of hydrocarbon solubility in water with solvent cavity surface area. J. Phys. Chem. 1972, 76, 2754-2759.
(11) Swanson, J. M. J.; Henchman, R. H.; McCammon, J. A. Revisiting free energy calculations: A theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys. J. 2004, 86, 67-74.
(12) Kuhn, B.; Kollman, P. A. Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J. Med. Chem. 2000, 43, 3786-3791.
(13) Srinivasan, J.; Cheatham, T. E., 3rd; Cieplak, P.; Kollman, P. A.; Case, D. A. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helixes. J. Am. Chem. Soc. 1998, 120, 9401-9409.
(14) Donini, O. A. T.; Kollman, P. A. Calculation and prediction of binding free energies for the matrix metalloproteinases. J. Med. Chem. 2000, 43, 4180-4188.
(15) Wang, J.; Morin, P.; Wang, W.; Kollman, P. A. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J. Am. Chem. Soc. 2001, 123, 52215230.
(16) Huo, S.; Wang, J.; Cieplak, P.; Kollman, P. A.; Kuntz, I. D. Molecular dynamics and free energy analyses of cathepsin D-inhibitor interactions: Insight into structure-based ligand design. J. Med. Chem. 2002, 45, 1412-1419.
(17) Brown, S. P.; Muchmore, S. W. High-throughput calculation of protein-ligand binding affinities: Modification and adaptation of the MM-PBSA protocol to enterprise grid computing. J. Chem. Inf. Model. 2006, 46, 999-1005.
(18) Bashford, D.; Case, D. A. Generalized Born models of macromolecular solvation effects. Annu. Rev. Phys. Chem. 2000, 51, 129152.
(19) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M., Jr.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197.
(20) Wang, J.; Cieplak, P.; Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 2000, 21, 1049-1074.
(21) Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T. A point-charge force field for molecular mechanics simulations of proteins. J. Comput. Chem. 2003, 24, 1999-2012.
(22) Cieplak, P.; Caldwell, J.; Kollman, P. Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: Aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases. J. Comput. Chem. 2001, 22, 1048-1057.
(23) Weber, P. C.; Ohlendorf, D. H.; Wendolowski, J. J.; Salemme, F. R. Structural origins of high-affinity biotin binding to streptavidin. Science 1989, 243, 85-88.
(24) Weber, P. C.; Wendoloski, J. J.; Pantoliano, M. W.; Salemme, F. R.; Crystallographic and thermodynamic comparison of natural and synthetic ligands bound to streptavidin. J. Am. Chem. Soc. 1992, 114, 3197-3200.
(25) Pugliese, L.; Coda, A.; Malcovati, M.; Bolognesi, M. 3-Dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at $2.7 \AA$ resolution. J. Mol. Biol. 1993, 231, 698-710.
(26) Livnah, O.; Bayer, E. A.; Wilchek, M.; Sussman, J. L. 3-Dimensional structures of avidin and the avidin biotin complex. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 5076-5080.
(27) Green, N. M. Thermodynamics of the binding of biotin and some analogues by avidin. Biochem. J. 1966, 101, 774-780.
(28) Green, N. M. Avidin. Adv. Protein Chem. 1975, 29, 85-133.
(29) Green, N. M. Avidin and streptavidin. Methods Enzymol. 1990, 184, 51-67.
(30) Kuhn, B.; Gerber, P.; Schulz-Gasch, T.; Stahl, M. Validation and use of the MM-PBSA approach for drug discovery. J. Med. Chem. 2005, 48, 4040-4048.
(31) Tomasi, J.; Mennucci, B.; Cancès, E. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J. Mol. Struct.: THEOCHEM 1999, 464, 211-226.
(32) Besler, B. H.; Merz, K. M.; Kollman, P. A. Atomic charges derived from semiempirical methods. J. Comput. Chem. 1990, 11, 431-439.
(33) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B. Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; AlLaham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Gaussian, Inc.: Wallingford, CT, 2004.
(34) Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. A wellbehaved electrostatic potential based method using charge restraints for deriving atomic charges. The RESP model. J. Phys. Chem. 1993, 97, 10269-10280.
(35) Case, D. A.; Darden, T. A.; Cheatham, T. E.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Merz, K. M.; Wang, B.; Pearlman, D. A.; Crowley, M.; Brozell, S.; Tsui, V.; Gohlke, H.; Mongan, J.; Hornak, V.; Cui, G.; Beroza, P.; Schafmeister, C.; Caldwell, J. W.; Ross, W. S.; Kollman, P. A. AMBER 8; University of California: San Francisco, CA, 2000.
(36) Spartan 5.0; Wavefunction, Inc. (18401 Von Karman Avenue, Suite 370, Irvine, CA 92612).
(37) Rocchia, W.; Alexov, E.; Honig, B. Extending the applicability of the nonlinear Poisson-Boltzmann equation: multiple dielectric constants and multivalent ions. J. Phys. Chem. B 2001, 105, 6507-6514.
(38) Sitkoff, D.; Sharp, K. A.; Honig, B. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 1994, 98, 1978-1988.
(39) Onufriev, A.; Bashford, D.; Case, D. A. Exploring protein native states and large-scale conformational changes with a modified generalized Born model. Proteins 2004, 55, 383-394.
(40) Jensen, F. Introduction to Computational Chemistry; John Wiley \& Sons: New York, 1999.
(41) Sigfridsson, E.; Ryde, U.; Bush, B. L. Restrained point-charge models for disaccharides. J. Comput. Chem. 2002, 23, 351-364.
(42) Bashford, D.; Gerwert, K. Electrostatic calculations of the $\mathrm{p} K_{\mathrm{a}}$ values of ionizable groups in bacteriorhodopsin. J. Mol. Biol. 1992, 224, 473-486.
(43) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327-341.
(44) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684-3690.
(45) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An $N \cdot \log -$ (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089-10092.
(46) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935.
(47) Caldwell, J. W.; Kollman, P. A. Structure and properties of neat liquids using nonadditive molecular dynamics: Water, methanol and N-methylacetamide. J. Phys. Chem. 1995, 99, 6208-6219.
(48) Lu, Q.; Luo, R. A Poisson-Boltzmann dynamics method with nonperiodic boundary condition. J. Chem. Phys. 2003, 119, 1103511047.
(49) André, I.; Kesvatera, T.; Jönsson, B.; Åkerfeldt, K. S.; Linse, S. The role of electrostatic interactions in calmodulin-peptide complex formation. Biophys. J. 2004, 87, 1929-1938.
(50) Raha, K.; Merz, K. M. Large-scale validation of a quantum mechanics based scoring function: Predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes. J. Med. Chem. 2005, 48, 4558-4575.
(51) Nemoto, T.; Fedorov, D. G.; Uebayasi, M.; Kanazawa, K.; Kitaura, K.; Komiji, Y. Ab initio fragment molecular orbital (FMO) method applied to analysis of the ligand-protein interaction in a pheromonebinding protein. Comput. Biol. Chem. 2005, 29, 434-439.
(52) Siegbahn, P. E. M.; Blomberg, M. R. A. Transition metal systems in biochemistry studied by high accuracy quantum chemical methods. Chem. Rev. 2000, 100, 421-437.
(53) Reynolds, C. A.; Essex, J. W.; Richards, W. G. Errors in free energy perturbation calculations due to neglecting the conformational variation of atomic point charges. Chem. Phys. Lett. 1992, 199, 257260.
(54) Lwin, T. Z.; Zhou, R. H.; Luo, R. Is Poisson-Boltzmann theory insufficient for protein folding simulations? J. Chem. Phys. 2006, 124, 034902.
(55) Geney, R.; Layten, M.; Gomperts, R.; Hornak, V.; Simmerling, C. Investigation of salt bridge stability in a generalized Born solvent model. J. Chem. Theory Comput. 2006, 2, 115-127.
(56) Sigalov, G.; Fenley, A.; Onufriev, A. Analytical electrostatics for biomolecules: Beyond the generalized Born approximation. J. Chem. Phys. 2006, 124, 124902.
(57) Pearlman, D. A. Evaluating the molecular mechanics PoissonBoltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase. J. Med. Chem. 2005, 48, 7796-7807.

JM0608210

[^0]: * To whom correspondence should be addressed. Phone: +46-46 2224502. Fax: + 46-46 2224543. E-mail: Ulf.Ryde@teokem.lu.se.
 ${ }^{\dagger}$ Lund University.
 $\stackrel{*}{*}$ AstraZeneca R\&D.

